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Abstract. We present a semi-analytic study of Ising spins on a simple square or cubic lattice coupled to
a transverse magnetic field of variable strength. The formal analysis employs correlated basis functions
(CBF) theory to investigate the properties of the corresponding N-body ground and excited states. For
these states we discuss two different ansaetze of correlated trial wave functions and associated longitudinal
and transverse excitation modes. The formalism is then generalized to describe the spin system at nonzero
temperatures with the help of a suitable functional approximating the Helmholtz free energy. To test the
quality of the functional in a first step we perform numerical calculations within the extended formalism
but ignore spatial correlations. Numerical results are reported on the energies of the longitudinal and
the transverse excitation modes at zero temperature, on critical data at finite temperatures, and on the
optimized spontaneous magnetization as a function of temperature and external field strength.

PACS. 75.10.Jm Quantized spin models – 67.40.Db Quantum statistical theory; ground state, elementary
excitations – 05.30.Jp Boson systems – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)

1 Introduction

Spin-lattice models have traditionally provided insights
into magnetic or ferroelectric properties and structural
phase transitions of crystalline materials [1–3]. Recent
ab-initio studies of the transverse Ising model at zero
temperature employing correlated basis functions (CBF)
theory [4–6] offer valuable new perspectives on the equi-
librium behaviour in a whole range of order-disorder prob-
lems [7–10]. Focusing on the transverse Ising model as a
prototypical case, reference [7] presents the elements of
the CBF approach for lattice systems and reports formal
and numerical results on the ground-state energy, the spa-
tial distribution function, the order parameter, and the
magnon excitation energies at zero temperature. A special
feature of this system is its duality to the vacuum sector of
the Z(2) lattice gauge model in two spatial dimensions [8].

The present contribution extends these previous in-
vestigations of the properties of the transverse Ising spin
lattice in two directions, (i) we modify the variational
ground-state of Hartree-Jastrow type adopted in refer-
ences [7,8] and propose to explore a different kind of
spatial correlations with associated spin excitations be-
ing transverse to the spontaneous magnetization, (ii) we
prepare the ground for a generalization of CBF theory to
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investigate the spin behaviour of the system at nonzero
temperatures, ignoring correlation effects at present.

Section 2 describes the basic relations of a CBF anal-
ysis of the correlated ground state of the Ising model and
of its transverse and longitudinal spin excitation modes.
An extended version of CBF theory applicable at nonzero
temperatures is described in Section 3. In a first step of
application we present numerical results on critical data
of the two-dimensional transverse Ising system at finite
temperatures ignoring spatial correlations (Sect. 4). We
also discuss possible future studies and improvements.

2 CBF analysis

We consider a system of N Ising spins on N lattice sites
in the thermodynamic limit (N → ∞) on a simple square
or cubic lattice subject to a transverse external magnetic
field. The properties of the ground and excited states are
stored in the Hamiltonian [7]

H =
1
2

N∑

i,j

∆ijσ
x
i σx

j + λ

N∑

i

(1 − σz
i ). (1)

The ith spin, located at the lattice point ri, is repre-
sented by the Pauli vector operator σi with spin com-
ponents σx

i , σy
i , and σz

i in the x, y, and z directions
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having eigenvalues ±1. The spins interact through their
x-components with ∆ij ≡ ∆(ri − rj) ≡ ∆(n) taking
the value −1 for nearest neighbors, ∆ij = 2D for i = j
and ∆ij = 0 otherwise, where D is the spatial dimension
(D = 2 or 3). The coupling parameter λ measures the
strength of the transverse external magnetic field. The
system exhibits a homogeneous ferromagnetic phase in
the thermodynamic limit (N → ∞, unit lattice constant)
at sufficiently small coupling parameters, 0 ≤ λ ≤ λc.
The ordering is characterized by the spontaneous magne-
tization Mx in x-direction. At coupling parameters in the
range λc ≤ λ ≤ ∞, the spin system is disordered (Mx ≡ 0)
and paramagnetic.

The energy-expectation value for the exact or approx-
imate N -body state |Ψ〉 can be expressed by the func-
tional [7,8]

E0 =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉 = V + VM (2)

with

V = ND(1 − M2
x)

[
1 +

1
2D

∑

n

∆(n)Gx(n)

]
, (3)

VM = Nλ
[
1 − (1 − M2

x)
1
2 n12

]
. (4)

The components V and VM represent, respectively, the
internal interaction energy and the magnetic energy. The
quantities appearing in (3) and (4) are the spontaneous
magnetization Mx (the order parameter of the ferromag-
netic phase) the spin-exchange strength n12 and the mod-
ified spatial distribution function Gx(n), defined, respec-
tively, by

Mx =
〈Ψ |σx

i |Ψ〉
〈Ψ |Ψ〉 , n12 =

[
(1 − M2

x)−
1
2

] 〈Ψ |σz
i |Ψ〉

〈Ψ |Ψ〉 , (5)

and

Gx(n) = (1 − M2
x)−1

[
gx(n) − δn0 − (1 − δn0)M2

x

]
. (6)

Here, function Gx(n) is the short-ranged part of the spin
distribution function

gx(n) =
〈Ψ |σx

i σx
j |Ψ〉

〈Ψ |Ψ〉 . (7)

We may generate excited states with definite momen-
tum �k by applying an appropriate excitation opera-
tor ρ(k) on the trial ground state of the spin system. The
associated excitation energy is given by the Feynman for-
mula [11], ω(k) = ε0(k)/S0(k). The single-particle energy
at zero temperature is

ε0(k) =
〈Ψ |[ρ(k), [H, ρ(−k)]]|Ψ〉

2N〈Ψ |Ψ〉 (8)

and quantity S0(k) is the corresponding structure function

S0(k) =
〈Ψ |ρ(k)ρ(−k)|Ψ〉

N〈Ψ |Ψ〉 . (9)

To construct the correlated ground states and excita-
tion operators of interest for an interacting many-body
system one has to resort to approximation procedures.
The simplest technique is provided by a mean-field as-
sumption that completely ignores correlation effects. In
this case the ground states are assumed to be represented
by a product of single-particle (single-site) states, i.e., by
N -body trial states of Hartree type. In a next step we may
employ CBF theory on a variational level to account for
correlations induced by the spin-spin interactions. Usually,
one begins with an ansatz of Hartree-Jastrow form for the
ground state and adopts Feynman’s single-particle (single-
site) approximation for the excitation operator. The vari-
ational principle for the energy is then employed to de-
termine the optimal Hartree-Jastrow wave function. CBF
theory may be systematically continued by incorporating
triplet correlations in the ground-state trial function and
two-body components in the excitation operator. Such cal-
culations have been extensively performed in theoretical
and numerical studies of quantum fluids [12] yielding valu-
able analytic insights and quantitative results of high nu-
merical accuracy.

In a mean-field approximation of CBF theory corre-
lations are neglected, hence function (6) is set zero and
the strength factor n12 is unity [7,8]. In this case the
optimal order parameter is of the analytic form Mx =√

1 − (λ/2D)2 in the ordered phase, 0 ≤ λ ≤ λc = 2D.
Further, the associated excitation operator is restricted to
a sum of N single-spin operators. To find the best op-
erator of this kind, we choose (i) ρ(k) = ρx(k) or, (ii)
ρ(k) = ρy(k) with

ρx
k =

N∑

i

eik·riσx
i , (10)

ρy
k =

N∑

i

eik·riσy
i , (11)

respectively. The excitation operator (10) generates a lon-
gitudinal mode with spin component in direction of the
spontaneous magnetization Mx, case (ii) describes a spin
mode transverse to the external field and to the sponta-
neous magnetization. Due to the neglect of correlations
the structure function S0(k) is independent of wave num-
ber k in both cases (10) and (11). However, the corre-
sponding excitation energies to branch (10) differ from
those of case (11). For the longitudinal ansatz (10) we find
ω(k) = 2λ in the paramagnetic phase and ω(k) = 8 in the
ferromagnetic phase (D = 2). In contrast, the results for
case (ii) are:

ω(k) = 2(λ − λc) + 2
∑

n

∆(n)
(
eik·n − 1

)
(12)

(D = 2) for the excitations in the paramagnetic phase,
λ > λc = 4, and

ω(k) = 8

[
1 −

(
λ

4

)2
]

+ 2
(

λ

4

)2 ∑

n

∆(n)
(
eik·n − 1

)
,

(13)
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Fig. 1. The energy gap at k = 0 of the longitudinal and
the transverse excitation modes of the Ising model on a simple
square lattice. The solid line indicates the energy of the trans-
verse excitations given by (12) and (13). The dotted line gives
the excitation energy of the longitudinal branch.

for the ordered phase, i.e., for λ < λc = 4. Figure 1
displays the energy gap (at k = 0) of both excitation
branches. The energy gap of the transverse excitations
vanishes at the critical coupling strength.

To include the effects of spatial spin correlations on the
ground state of the spin system in cases (i) and (ii), we
take, respectively, account of the longitudinal excitations
generated by the operator ρx(k) or the transverse exci-
tations described by the operator ρy(k). This is done by
virtually exciting and de-exciting the uncorrelated ground
state in analogy to the paired-phonon analysis familiar
from CBF theory of liquid helium [13]. In the first case, we
therefore begin the CBF analysis with a Hartree-Jastrow
ansatz of form [7,8]

|Ψx〉 = exp(MxUM + U)|0〉, (14)

for the correlated ground states. The trial ansatz holds for
the ordered phase (0 ≤ Mx ≤ 1) and for the disordered
phase (Mx ≡ 0). The vacuum reference state |0〉 is taken
as a symmetric product of single-spin eigenstates of the
spin components σz

i , with eigenvalues +1. The pseudopo-
tentials defining the exponent appearing in (14) are

U =
1
2

N∑

i<j

u(rij)σx
i σx

j , (15)

UM =
N∑

i

u1(ri)σx
i +

1
4

N∑

i<j

uM (rij)(σx
i + σx

j ). (16)

The trial functions u1(ri), u(rij), and uM (rij) are to
be determined by minimizing the associated energy func-
tional of the ground states. For an infinitely extended lat-
tice (N → ∞), function u1(ri) is constant and indepen-
dent of the lattice site, while u(rij) and uM (rij) depend

only on the relative distance |n| = |ri−rj |. The ansatz, of
course, recovers the mean-field approximation by setting
the two-body pseudopotentials zero. The real magnon ex-
citations corresponding to ansatz (14−16) are described in
Feynman approximation by the excited states ρx(k)|Ψx〉.
In this case the energy (8) can be cast into the explicit
form

ε0(k) = 2λn12(1 − M2
x)

1
2 . (17)

The associated approximate structure function S0(k) =
(1 − M2

x)
1
2 S(k) needed for the evaluation of the energy

ω(k) is given by the Fourier transform

S(k) = 1 +
∑

n

eik·n Gx(n). (18)

References [7,8] provide explicit expressions for the en-
ergy functional E[Gx(n), Mx; λ] and for the set of Euler-
Lagrange equations which determine the optimal physical
quantities of interest. These references also report numer-
ical results on the energy of the correlated ground state
represented by the optimal state of type (14) and on the
corresponding optimized excitation energies of the longi-
tudinal mode. The numerical results show that the spa-
tial correlations strongly influence the excitation energies
of the longitudinal mode. Compared with the mean-field
result ω(0) = 4D = 8 at the critical coupling parame-
ter (see Fig. 1) the correlation effects drastically reduce
the energy gap by about a factor 3/8. However, we learn
from Figure 1 that the energies of the transverse mode
in mean-field approximation are still lower than the ener-
gies of the longitudinal mode even if spatial correlations
in x-direction are taken into account.

It is therefore of interest to investigate also case (ii)
where the correlated trial ground states are generated by
the pairing of virtual transverse spin excitations and de-
excitations with total momentum zero. The associated ex-
cited states have then to be constructed with the help of
operator (11). The corresponding Hartree-Jastrow ansatz
for the correlated trial ground states differs, of course,
from ansatz (14−16) and is of form

|Ψ〉 = exp(MxU ′
M + U ′)|0〉 (19)

with pseudopotentials of the following form:

U ′ =
1
2

N∑

i<j

u′(rij)σ
y
i σy

j , (20)

U ′
M = i

N∑

i

u′
1(ri)σ

y
i . (21)

Note that the pseudopotential U ′
M generates a unitary

transformation of the reference state |0〉 in contrast to
the operator UM , equation (16). The optimization of the
associated energy functional may be performed in close
analogy to the explicit construction of Euler-Lagrange
equations for ansatz (14−16) described in detail in refer-
ences [7,8]. These references also report numerical results
on the energies of the optimized ground and excited states
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and other physical quantities of interest corresponding to
ansatz (14−16). In case (ii) we have derived explicit formal
expressions for the energy functional, the Euler-Lagrange
equations, and the excitation energies corresponding to
ansatz (19−21). However, at present, numerical calcula-
tions within CBF theory based on ansatz (19−21) are not
yet available.

3 Extension to nonzero temperatures

For quantum fluids such as liquid helium or para-hydrogen
CBF theory has been adequately generalized to describe
such systems at nonzero temperatures [14,15]. This so-
called correlated density matrix (CDM) theory [16–18] be-
gins with a suitable trial ansatz for the correlated N -body
density matrix from which one constructs an appropri-
ate approximation for the Helmholtz free energy. There-
upon a minimum principle for the free energy functional
is employed. Functional variation then leads to associ-
ated Euler-Lagrange equations which determine the op-
timal density-matrix elements and excitation energies of
the correlated Bose fluid.

This CDM theory may be properly adapted for an
ab-initio study of spin-lattice systems at finite temper-
atures. To derive an explicit expression for the free energy
one must construct the functionals which represent the
internal energy at nonzero temperatures and the entropy.
To do so we start from the CBF ground-state functional
E[Gx(n), Mx; λ] and proceed – as in the case of quan-
tum fluids – to the more general functional of the internal
energy that includes the energy component of real excita-
tions. At present we have explicitly constructed an exten-
sion of ansatz (14−16) involving only real and virtual spin
excitations of longitudinal type to nonzero temperatures.

For a first and quick numerical test of this approach
we specialize the adapted CDM formalism by ignoring the
spatial correlations of the Ising model, i.e., we set Gx(n)
zero, evaluate the associated Euler-Lagrange equations,
and calculate their optimal solutions, in particular, the
order parameter Mx as a function of temperature and cou-
pling strength. Under this assumption the internal energy
per spin reads

E/N = E0/N +
1
N

∑

k

ε(k)n1(k) (22)

with functional E0 being of the same form as for the un-
correlated groundstate and an additional term that rep-
resents the energy contributions of the excitations. The
single-magnon distribution function n1(k) of the real ex-
citations is a Bose function of the explicit form

n1(k) =
1

(eβω(k) − 1)
(23)

at temperature T = 1/(βkB) and excitation energy ω(k).
The single-particle energy appearing in the sum of (22) is

given by

ε(k) = ε0(k)(1 − M2
x)−1 exp

2
N

∑

k

n1(k)[1 − n1(k)]
S(k)(1 − M2

x)
.

(24)
The entropy is represented by the familiar expression for
independent bosons,

TSe =
1
β

∑

k

{[1 + n1(k)] ln[1 + n1(k)]

−n1(k) ln n1(k)} . (25)

The free energy functional is then the difference of the
components (22) and (25). It depends on the distribu-
tion n1(k), the spontaneous magnetization Mx, and the
external parameter T and λ. Upon variation with respect
to the first two variables we obtain the associated Euler-
Lagrange equations

1
N

∂F

∂n1(k)
= 0 (26)

and
1
N

∂F

∂M2
x

= 0. (27)

Equation (27) is only needed for the ordered phase
and can be discarded in the paramagnetic regime. The
Euler-Lagrange equation (26) yields the optimal spec-
trum ω(k) via

ε0(k) = S0(k)ω(k) tanh
1
2
βω(k). (28)

Evaluation of the derivative in equation (27) leads to an
explicit expression for the optimal spontaneous magneti-
zation,

M2
x = 1 −

(
λ

Λ

)2

, (29)

with the Hartree-field

Λ =
2D

n12(T )(1 + H1)
. (30)

The component H1 is defined by

H1 = −2(1 − M2
x)

∂

∂M2
x

ln n12(T ). (31)

The spin exchange strength n12(T ) at a finite tempera-
ture T is given by

n12(T ) = n12 exp

(
− 2

N

∑

k

n1(k)[1 − n1(k)]
S(k)(1 − M2

x)

)
. (32)

We may interpret equation (29) as a Hartree equation
for the order parameter Mx that characterizes the fer-
romagnetic phase in the range of coupling parameters
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Fig. 2. Mean-field results on the temperature dependence of
the critical coupling parameter of the transverse Ising model in
the (Tc, λc) phase diagram, in two spatial dimensions (D = 2).
The phase-boundary curve separates the ferromagnetic region
from the paramagnetic phase regime.

0 ≤ λ ≤ λc. The temperature dependence of the crit-
ical coupling parameter λc is determined by the simple
analytic expression

λc = 2D tanh βλc. (33)

Taking the limit β → ∞ we correctly recover the mean-
field result λc = 4 at zero temperature. In the limit λc → 0
equation (33) specializes to λc = 2Dβλc, i.e., the critical
temperature is Tc = 2D. This agrees with Pfeuty’s and El-
liot’s result [19]. Condition (33) recovers also the results of
reference [20] derived in standard mean-field theory. Fig-
ure 2 displays results on critical data, i.e., on the solutions
of equation (33), in the (T , λ) phase diagram (D = 2).

4 Numerical results and conclusions

We have solved the Hartree equation (29) for the opti-
mal spontaneous magnetization Mx of the transverse Ising
model on a simple square lattice as a function of the exter-
nal parameters T and λ. For a numerical comparison we
have also repeated standard mean-field calculations [21]
on the magnetization Mx. In Figure 3 the results on the
squared magnetization M2

x derived from (29) and (30)
are plotted as a function of the strength parameter at
various fixed temperatures in the ferromagnetic domain.
The dependence of the squared optimized order parame-
ter on temperature T at various fixed parameter values λ
is shown in Figure 4. The order parameter vanishes as the
external field approaches the critical strength which in-
creases with decreasing temperature. At T = 0 we have
the exact result λc = 4. On the other hand, if the temper-
ature approaches the critical value T = 4 K the critical

Fig. 3. Mean-field results for the squared optimal order pa-
rameter (magnetization Mx) of the ferromagnetic phase of the
two dimensional transverse Ising model as function of the cou-
pling strength λ, at various temperatures.

Fig. 4. Mean-field results for the squared optimal order pa-
rameter Mx of the ferromagnetic phase of the transverse Ising
model on a simple square lattice, at differing strengths λ of the
external field.

strength is zero, as it should be. As seen in Figure 3, the
magnetization at a given strength λ decreases monotoni-
cally with increasing temperature.

By comparing the above results with those of a stan-
dard mean-field approach [21] we find, however, some un-
expected features. In contrast to the monotonous decrease
of the spontaneous magnetization with increasing strength
parameter as familiar from standard mean-field results the
solutions of (29) and (30) develop a nonmonotonous de-
pendence on the parameter λ for temperatures T < 3.8 K
and coupling strengths λ < 2. This feature is particularly
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pronounced at relatively low temperatures. This unusual
behaviour is also reflected in Figure 4 by the results on
quantity M2

x for coupling parameters λ < 2. We inter-
pret this numerical outcome as an artifact of the adopted
approximation for the free energy functional at nonzero
temperatures and of the corresponding approximate ex-
citation generator ρx(k). We believe that ansatz (19−21)
in conjunction with the choice ρy(k) for the excitation
operator will lead to an improved energy functional for
the ground state and low lying excitations and, in con-
sequence, also to a more accurate quantitative treatment
of correlation effects in the Helmholtz free energy func-
tional of the transverse Ising model within CBF and
CDM theory.
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